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Abstract--A particular formulation of the three-dimensional finite-element method is established
for the elastic-plastic analysis of a triangular pyramidal indentation. Indentations on 0.46% carbon
steel and 70/30 brass are analyzed by the proposed method using the tensile stress-strain curvc for
each material. The calculated results are in good agreement with the experimental results. The curve
of the calculated load-penetration depth is analyzed with relation to the geometrical similarity and
the mechanical properties. The extension of the plastic zone induced by the indentation made by an
indenter is investigated using the analysis. 1997 Elsevier Science Ltd.

1. INTRODUCTION

Magnetic hard disks are widely used for computer information storage systems, and research
continues to increase the density of the information storage (Kaneko, 1991). The structure
of the magnetic hard disk is composed of several thin layers with thickness ranging from a
few to a few hundred nanometers. The information is stored in the magnetic layer of a disk
which is covered with two protection layers. One protects the information from the contact
of the head (slider), the electronic device for reading and writing the information on the
magnetic layer, and another is a lubricant between the head and the protection layer.
Decreasing the thickness of the protection layer to increase the density of information
storage has been a major research goal. For strength evaluations, the mechanical properties
of the protection layers must be determined. Recently, the ultra-low load hardness test has
been considered as a useful tool for estimating the mechanical properties of a very small
scale region or of a very thin layer and several hardness testers have been developed and
applied to practical use (Pethica et al., 1983; Doerner and Nix, 1986; Yanagisawa and
Motomura, 1987; Tsukamoto et al., 1987; Inamura and Suzuki, 1990; Yanagisawa, 1991 ;
Ohmae and Tagawa, 1992; Shimamoto et al., 1993).

The mechanical properties of the materials are estimated from the relationship between
load and penetration depth measured by the ultra-low load hardness tester in which a
triangular pyramidal diamond is used as the indenter. The advantage of using a lriangular
pyramidal diamond is that it is easier to prepare the tip with a sharp point as compared
with four-faced pyramidal indenters which often have a chisel edge and conical indenters
which cannot avoid a rounded tip; this is illustrated schematically in Fig. 1. While exper
imental studies using the ultra-low load hardness testers to determine the mechanical
properties of materials have been conducted, there are few analytical investigations on the
triangular pyramidal indentation. No theoretical solution for the problem of a triangular
pyramidal indentation has yet been developed. For elastic materials, Barber and Billings
(1990) and Bilodeau (1992) presented an approximate solution for triangular pyramidal
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(a) Conical indenter (b) Square pyramidal indenter (c) Triangular pyramidal indenter

Fig. I. Shape of indenter.

indentation. Olaf and Scheer (1993) carried out the simulation of the depth-sensing (tri
angular pyramidal) indentation process by a commercial FEM program using two dimen
sional as well as three dimensional models of the indenter and the specimen. They pointed
out that the most important system parameters of depth-sensing indentation test are the
geometry and the blunting of the indenter tip. The coupling of the influence of system
and specimen parameters can only be separated using the combination of numerical and
experimental investigations. Recently, Larsson et al. (1996) analyzed the Berkovich inden
tation test numerically, using a commercial FEM program, and experimentally, both on
nano- and microscale. The Berkovich is the triangular pyramidal indenter whose total area
of three surfaces is equal to that of four surfaces of the Vickers at the same height
(Berkovich, 1951). They derived the universal formulae for hardness and total indentation
load from the numerical results showing good agreement with experimental findings. More
over they also checked the accuracy of relevant formulae for determining the clastic stiffness
at initial unloading and concluded that the formulae are reliable regardless of the plastic
hardening, at least for the range of moderate hardening investigated in their study.

The authors formulated a three-dimensional finite-element method for the elastic
analysis of triangular pyramidal indentation in a previous paper (Murakami ct al., 1994).
The calculated results of the FEM analysis clarified the influences of material elastic
constants (Young's modulus and Poisson 's ratio) and of the apical angle of triangular
pyramidal indenters on the relationship between elastic load and penetration depth.
Although the elastic FEM analysis can be applied to certain materials such as Corning
glass and sapphire, in which the relationship between load and penetration depth behaves
elastically below the threshold load (Page et al., 1992; Shimamoto et al., 1993: Murakami
et al., 1994), for most materials plastic deformation occurs under a small indentation load
and the elastic analysis will not be valid.

In this paper, the method of elastic analysis for triangular pyramidal indentation
(M urakami et al., 1994) is extended to the elastic-plastic analysis which is hased on the
strain incremental plastic theory of Prandtl-Reuss equation. The method of the present
paper enables one to analyze accurately the triangular pyramidal indentation without using
commercial FEM programs. In order to verify the validity and accuracy, the proposed
method is applied to a triangular pyramidal indentation at the micro-hardness region
(maximum load is 9.8 N) on 0.46% carbon steel and 70/30 brass using the tensile stress
strain curve. The calculated results are compared with experimental results of micro
hardness tests using the triangular pyramidal diamond indenter. The curve of the calculated
load-penetration depth is analyzed with relation to the geometrical similarity and the
mechanical properties. Since there is no established method to evaluate the mechanical
properties of materials with nano-meter size, the combined analytical-experimental method
will be necessary. The promising method to solve the complicated problem of this kind
must be proved its validity by the test of micro-mechanics level. Thus, we expect the
availability of the present method as a possible analytical method to evaluate the mechanical
properties in the ultra-low load hardness test.



Analysis of pyramidal indentation

2. ANALYTICAL METHOD
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The three-dimensional FEM for elastic-plastic deformation based on incremental
strain theory is used for the analysis of triangular pyramidal indentation. Only the outline
of the proposed method is explained here because the general formulation and establishment
of boundary conditions for the calculation are described in detail elsewhere (M urakami el

al., 1994). Based on the shape of the triangular pyramidal indenter and the deformation
of specimen, conventional constant-strain tetrahedron elements are used. However, an
appropriate meshing pattern of the elements must be selected in order to obtain an accurate
solution. After trial and error the specimen to be indented is assumed to take the form of
a hexagonal pyramid. The positional relationship between the triangular pyramidal indenter
and the specimen to be indented is illustrated in Fig. 2 and the shape of the triangular
pyramidal indenter is illustrated in Fig. 3. The symbol ¢ defines the apical angle and 'Y. the
nominal angle between the face and the vertical axis. If the symmetry of the problem is
taken into account, the calculation is conducted in the domain OABe under the assumption
of a frictionless contact by a rigid triangular pyramid with ¢ = 115 deg (ex = 65 deg), which
is the value of the triangular pyramidal diamond indenter generally used in micro-hardness
testing. Although FEM methods have been established for the calculation of three-dimen
sional elasto-plasticity, special consideration must be given to the treatment of the boundary
conditions in order to calculate the triangular pyramidal indentation; it is necessary to set
up the FEM program developed by ourselves. The characteristics of the proposed analytical
method for treating the nodal points on the three boundaries is described in the following.

y
x

OA=OB=OC=k

Fig. 2. Analytical model.

z y

Fig. 3. Shape of triangular pyramidal indenter.
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Fig. 4. Displacement boundary condition.

2.1. The nodes of the boundary 0 A C
In order to conduct the calculation based on incremental strain theory, we denote the

incremental displacements of a nodal point in the x, y and Z directions as Au, Av and Aw,
and the incremental loads as AF", AF, and AFe , respectively.

We consider that a nodal point I(xioY" Zf) is moved to a point F(X,+AUioYf
+Av" zf+Awf) by the indentation step from n to n+ I. Then the corresponding nodal
force in the normal direction is changed from Ff to Ff +AF,. When the nodal point lies on
the boundary OAC, it is constructed against normal displacement and must satisfy the
incremental displacement-boundary condition,

(I)

where y is tan ewith e = L BOA = n/3. Since the nodal force on the boundary OAC acts
in the normal direction, it must satisfy the incremental load-boundary conditions,

(2)

(3)

2.2. The nodes in contact with the indentation surface
The displacement of the triangular pyramidal indenter surfaces by the indentation step

from n to n + I is shown in Fig. 4. When the nodes are in contact with the indentation
surface, but not on the ridge line HE (Fig. 2) of the indenter, the incremental displacement
boundary condition is given as

(4)

where f3 is tan'Y and b/!+ I is the incremental displacement of the rigid indenter in the Z

direction at step n + 1. Because of the frictionless contact, only the normal traction acts on
the contact surface. This leads to the incremental load-boundary condition at the contact
surface;

(5)

(6)

2.3. The nodes on the ridge line HE
When the contact nodes lie on the ridge line HE (Fig. 2) of the indenter, they must

satisfy the boundary conditions for both the contact surface and the OAC plane. That is,
the relevant incremental nodal force components of the node Ion the ridge line should be
the sum of the reaction forces from these two planes. Thus combining eqns (2) and (3) with
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eqns (5) and (6) gives the incremental load boundary condition for the nodes on the ridge
line of the triangular indenter as

(7)

2.4. Composition of the stiffness matrix for the incremental loading process
We next compose the FEM equations for the nodes of three particular boundaries. If

we pay attention to the incremental loads and the incremental displacements for the nodes
at the OAC plane which must satisfy the boundary conditions of eqns (1), (2) and (3), the
FEM equations can be written as

yk 31 - 2,1 +k31 - I ,J

o o 1.0

k 31,3/- 2

yk 31 - 2 ,31-1 +k31-1.31-1

-y

yk 3/ - 2 ,31+ k 31-I,31 tiu1 0

0 0 tiv1 0 (8)

k 31,31 tiw1 0

where k denotes the incremental stiffness matrix components. For the nodes in contact with
the indentation surface excluding the ridge line HE of the indenter, the boundary conditions
of eqns (4), (5) and (6) must be satisfied, and then the FEM equations can be written as

k 31 - 2,1

k 31 - I ,l -k31,dfJ
o o

2,31-2

o

k 31 - 2 ,31

k 31 - 1,31- k 31,311fJ
fJ

k 31 - 2 ,3/- 1

1.0

o

o
o (9)

For the nodes on the ridge line HE of the indenter, the boundary conditions of eqns (1),
(4) and (7) must be satisfied, resulting in:

o
o

1.0

o 1.0

yk31 - 2 ,31 +k 3/ _ 1,3/- k 31,3J!fJ tiul 0

0 0 tivl 0 (10)

f3 0 tiwl f3fJ n +!
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(c) Mesh of part A.

(a) FEM mesh on x-y plane,
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(d) Mesh of part B,

(b) FEM mesh on y-z plane,

The length of the minimum side of
the minimum element = 8.5 fJ- m.

Fig, 5, Finite element mesh, (a) FEM mesh on x-y plane, (b) FEM mesh on y-::: plane, (e) Mesh of
part A, (d) Mesh of part B,

2.5. FEM mesh, the boundary condition o[specimen and test materials
The mesh pattern of the analyzed domain OABC, shown in Fig. 2, is illustrated in Fig.

5. The total numbers of nodes and elements are 588 and 2160, respectively. The length of
outer boundary OA( = OB = OC) is 1.358 mm. The closest spacing of nodes is immediately
beneath the contact surface and the dimension of the corresponding elements is 8.5 ~lm. To
satisfy the symmetry condition, the node on the boundary OBC, which is constrained
against the nominal displacement or the incremental displacement in the ,'( direction, is
Au = O. The nodes of the boundary ABC are fixed as Au = Au = Aw = O. The validity of
this boundary condition was checked in a previous paper (Murakami and Matsuda, 1994).

A three-dimensional finite element method based on the strain incremental plastic
theory Prandtl-Reuss equation (Zienkiewicz, 1971) is used for the numerical analysis of the
triangular pyramidal indentation, Stress-strain curves of 0.46% carbon steel and 70/30
brass in tensile tests are shown in Fig. 6. The true stress-logarithmic strain curves of these
two materials are used for the analysis of triangular pyramidal indentation. The yield stress
of 0.46% carbon steel is 337 MPa and that of 70/30 brass is 81.7 MPa. Considering the
results of the Vickers hardness analysis by the FEM in the previous paper (M urakami and
Matsuda, 1994), the isotropic hardening rule is used for this FEM analysis. The elements
which satisfy the Mises yield criterion within ± I % error are regarded as yielded elements.
The deformed shape of the specimen is determined by adding stepwise incremental dis
placements to the previous coordinates of nodes. Because the number of calculation steps
is 268 in 0.46% carbon steel and 770 in 70/30 brass for the indentation (loading) process,
the deformation per one step can be considered sufficiently small for use of incremental
strain theory, The maximum indentation load, Pm"x for the microhardness test is 9.8 N (l
kgf).
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Fig. 6. Stress strain curve of 0.46%C steel and 70/30 brass.

3. RESULTS AND DISCUSSION

3.1. The shape of indentation
The micrograph of the triangular pyramidal diamond indentation for 0.46% carbon

steel after removal of the load, Pma, = 9.8 N (I kg£), is shown in Fig. 7. The hardness with
triangular pyramidal indenter is defined by the applied load divided by the surface area of
a triangular diamond pyramid as the Vickers hardness. Since the shape of the triangular
pyramidal indent projected onto the specimen surface plane is an equilateral triangle, as
shown in Fig. 7, the hardness is calculated by the height of the equilateral triangle, d.

The deformed shape of elements in the vicinity of the origin for P = Pmal = 9.8 N (I
kg£) in the FEM calculation is shown in Fig. 8, where the ~ - y plane is viewed from the
direction inclined to the horizon by 15 deg and rotated counterclockwise around the z-axis
by 30 deg. In this case the eleven nodal points are in contact with indenter and denoted by
the symbol •.

The profile of the indentation on the y-axis for 0.46% carbon steel and 70/30 brass
after unloading are shown in Fig. 9. The definition of the indentation size d in the FEM
analysis is in a sense arbitrary because each node of elements are connected by straight
lines during deformation. In this study, the edge of the indentation was defined as shown
in Fig. 9 by the intersection of two lines: one is the line extended from the center of
indentation and the other is the line extended from outside of indentation. Thus, the
indentation size is d = 0.096 mm (d;3 = 0.032 mm) for 0.46% carbon steel and d = 0.159
mm (d/3 = 0.053 mm) for 70/30 brass.

3.2. Comparison afnumerical results with experimental results
The hardness test was conducted by a commercial microhardness tester which was

equipped with the triangular diamond pyramidal indenter whose apical angles was 115 deg.

..

•

, .

•
50 fLm

Fig. 7. Micrograph of triangular pyramidal indentation for 0.46%C steel (Pm", = 9.8 N).
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Fig. 8. Deformation of elements in the vicinity of the origin at P = Paw, = 9.8 N for 0.46%C steel.
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(a) 0.46%C steel (Pmax=9.8N).

d/3=0.053mm
-0.01 !0.02 0.04 0.06 0.08 0.10

.-.:
0

I 0.01 tfr'
y(mm)

0.D2 ~ y

0.03l

(b) 70/30 brass (Pmax=9.8N).

Fig. 9. Shape of indentation on y-axis after unloading. (a) 0.46%C steel (Prna, = 9.8 N). (b) 70/30
brass (Pm"x = 9.8 N).

The testing was performed using a peak load Pmax = 9.8 N (1 kgf) for 30 seconds. The
specimens were annealed after machining and subsequently, polished with emery paper
and powder before testing. Three measurements of microhardness in one specimen were
averaged. Table 1 compares the numerical and experimental results for 0.46% carbon steel
and 70/30 brass. The scatter of indentation sizes of three tests was 1.2% for 0.46% carbon
steel and 1.6% for 70/30 brass. The difference of the indentation sizes between numerical
and experimental result is smaller than the scatter of the experimental results. Thus, the
analytical method developed in this study may be considered accurate enough and useful
for the analysis of triangular pyramidal indentations.

3.3. The load-penetration depth curve and the mechanical properties
Because the indentations made by a conical or pyramidal indenter are geometrically

similar regardless of their size (except at very low loads), the mean pressure at the inden
tation, i.e. the hardness, should be independent of load. The load-penetration depth curve
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Table I. Comparison of numerical and experimental results for 0.46%C steel and 70/30 brass

4013

Pmax d(mm) 6 (mm) 6(d H TII , (UPa)

S45C
Experiment 9.8 N (I kg!) 0.097 0.010 0.103 1.634
Calculation 9.8 N (I kg!) 0.096 0.012 0.125 1.669

70/30 brass
Experiment 9.8 N (I kg!) 0.161 0.024 0.149 0.593
Calculation 9.8 N (I kg!) 0.159 0.023 0.145 0.608

obtained from such an indenter contains much information related to the mechanical
properties of the materials. In this section the load-penetration depth curve is analyzed
with relation to the geometrical similarity and the mechanical properties (Cook and Pharr,
1994).

The load P and penetration depth () curves calculated by the developed method are
shown in Fig. 10. The number of the nodes in contact with the triangular pyramidal indenter
at the maximum load is 11 for 0.46% carbon steel (shown in Fig. 8 by the symbol.) and
21 for 70/30 brass. The meshing of the elements and the applied load are selected by a
preliminary analysis which proved the reliability of the solution only for a sufficient number
of contact nodes. The loading process is essentially different from the unloading process in
Fig. 10. The curves of the loading process have several kinked points which are caused by
the contact of the nodal points on the (-axis with the ridge line of the indenter. On the
other hand, the unloading curves are smooth. Because the curves of the loading process in
the elastic analysis of triangular pyramidal indentation did not have such clear kinked
points, it is thought that the kinked points in the loading process are associated with an
increase in the number of nodal points in contact with the indenter and the subsequent
extension of the plastic zone.

Figure II replots the data of Fig. 10 using logarithmic axes. Figure II (a) represents
the curves of the loading process and Fig. 11 (b) the curves of the unloading one where ()f

is the final remnant plastic displacement. The lines in Fig. 11 indicate the equations
calculated by the least squares method using the data near the maximum load. In the
loading process the slope of the lines is slightly smaller than 2.0 which is a pure quadratic
relationship between load and penetration depth. On the other hand the slope of initial
unloading portion is approximately 2.0. In order to interpret the relation between load and
penetration depth which cannot be a pure quadratic one in micro Vickers hardness region,
Bernhardt (Bernhardt, 1941) proposed the followingeqn (II).

12 r---~-----,---~--y---~--~

oS45C ·70:30 Brass

0.03
1) (mm)

Fig. 10. Relationship between load P and penetration depth 6.
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0.0001 0.001 0.002

o-of(mm)

Fig. It. Relationship between P and 6 plotted using logarithmic coordinates. (a) Loading process.
(b) Unloading process.

(II)

Bernhardt pointed out that the linear term in eqn (II) arises, when additional attributes of
certain surfaces are taken into consideration. Maschke and Seifert (Maschke and Seifert,
1982) derived generalizations of Bernhardt's formula for micro-indentation tests which
make allowance to surface-layers with non-vanishing thickness. In this study the analytical
model is used as homogeneous materials without surface-layers.

Figure 12 shows the Plb and b relationship replotted from Fig. 10. The lines in Fig. II
indicate the equations calculated by the least squares method using the data near the
maximum load. It seems that the lines in Fig. II have the intercept at the vertical axis which
gives the linear term in eqn (II) and the value of the intercept depends on the materials.
According to the elastic analysis of the triangular pyramidal indentation the value of the
intercept is considered to be zero. Even in plastic analysis, if the shape of indentation is
always geometrically similar regardless the values of load, the value of the intercept should
be zero. However, in combined condition of elastic and plastic deformation, the yielding
occurs uncontinuously in certain critical zone with elastic stress gradient. Thus, it is thought
that the value of the intercept is correlated with the size effect in yielding phenomenon.

An evaluation of the mechanical properties from the load penetration depth curves in
the ultra-low load hardness test has been attempted by several researchers. The two most
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Fig. 12. Relationship between Fib and b.
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frequently measured mechanical properties are the hardness from the loading curve and
the elastic modulus from the unloading curve (Inamura et al., ]990; Soderlund and
Rowcliffe, ]994). Also in the present calculated results it is ensured that the slope of the
loading portion in Fig. ]2 can be correlated with the hardness, and the slope of the
unloading portion with Young's modulus.

3.4. The extension of the plastic zone
The extension of the plastic zone in the specimen at several loading steps is shown in

Fig. ]3. For 0.46% carbon steel at the load P = Pma " the extension of the plastic zone on
the specimen surface is ].3 ~ ].5 times larger than the indentation size d, and the periphery
of the plastic zone is slightly expanded toward the ~-axis direction, the direction of the
ridge line of the indenter. The depth of the plastic zone is approximately 1.5 times the
indentation size d and ]2 times the indentation depth. On the other hand for 70/30 brass at
the load P = Pmu " the extension of the plastic zone on the specimen surface is 1.8 times the
indentation size d, and the periphery of the plastic zone is nearly circular. The depth of the
plastic zone is approximately 1.8 times the indentation size d and 12 times the indentation
depth. Such numerical results will be useful in estimating the mechanical properties of
materials used in very thin layers by the ultra-low load hardness test. As consideration of
these numerical results requires a determination of the depth of the indentation to be made
to the thin layer compared with the thickness, because the experimental results are influenced
by material thickness in the ultra-low load hardness test. These problems must be discussed
in more detail in future research.

3.5. The stress distribution in the vicinity of the ~-axis

Figure ]4 shows the stress distribution in the vicinity of the ~-axis for P = Pmu ,' There
are no tensile stresses in the vicinity of the indenter, and the profiles of the stress distribution
for 0.46% carbon steel and 70/30 brass are similar. The stress peaks exist at the position of
~/(2d/3) = 0.7 from the center of contact surface.

Figure IS shows the distribution of residual stresses in the vicinity of the ~-axis after
unloading. All of the residual stresses in the vicinity of the ~-axis for both the materials are
compressive. In the results of the analysis of the Vickers hardness by Murakami and
Matsuda, there is large tensile residual stress in the vicinity of the indentation for 0.46%
carbon steel and 70/30 brass after unloading, and they pointed out the effect of the tensile
residual stress on the initiation of indentation cracks in ceramics (Murakami and Matsuda,
1994). In the hardness test of the triangular diamond pyramidal indenter for ceramics, the
authors have confirmed that the indentation cracks initiate on the extended line of the ridge
of the indentation after unloading as well as the Vickers hardness test. Comparing the
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Load Plastic
(PlPmax) zone

0.0625 IitJ
0.2500 «J
0.5625 mil
ooסס.1 ®

(a) 0.46%C steel.

y

Load Plastic
(P/Pmax) zone

0.0625 IitJ
0.2500 fff)
0.5625 ftJ
ooסס.1 if]

(b) 70/30 brass.

Fig. 13. Extension of plastic zone. (a) 0.46%C steel. (b) 70;30 brass.

profile of the distribution of residual stresses for 0.46% carbon steel with that for 70/30
brass in Fig. 15, it is found that the residual stresses approach the positive (tension) for
70/30 brass more than 0.46% carbon steel at ~/(2d/3) = 1 and the magnitude of the
residual stresses is dependent on the materials used. Since the exact stress-strain curves, i.e.
constitutive equations of ceramics, are not known, it is difficult to determine the exact
distribution of the residual stresses.

4. CONCLUSION

(1) A particular formulation of the three-dimensional finite-element method is estab
lished for the elastic-plastic analysis of a triangular pyramidal indentation.

(2) Triangular pyramidal indentations on 0.46% carbon steel and 70/30 brass are
analyzed by the developed method using the tensile stress-strain curves. The calculated
results are in good agreement with the experimental results.

(3) The curve of the calculated load-penetration depth is analyzed with rc1ation to the
geometrical similarity. The loading curve is slightly out of a pure quadratic relationship
between load and penetration depth. It is thought that the deviation from a pure quadratic
relation is correlated with the size effect in yielding phenomenon.
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Fig. 14. Stress distribution in the vicinity of ~-axis (P = Pm",)' (a) 0.46'YoC steel. (b) 70/30 brass.
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Fig. 15. Residual stress distribution in the vicinity of ~-axis. (a) 0.46%C steel. (b) 70/30 brass.
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